Головна

Шкільна бібліотека

Перелік предметів

Англійська мова
Біологія
Географія
Економіка
Інформатика
Історія
Математика
Німецька мова
ОБЖ
Політологія
Право
Природознавство
Психологія і педагогіка
Російська мова
Соціологія
Фізика
Філософія
Французька мова
Українська мова
Хімія

Підручники в PDF


 

Геометрія

Основні властивості найпростіших геометричних фігур

Суміжні й вертикальні кути

Два кути називаються суміжними, якщо в них одна сторона спільна, а інші сторони є доповняльними півпрямими.
На рисунку і — суміжні.

Властивості суміжних кутів
Теорема 1. Сума суміжних кутів дорівнює . (Зверніть увагу: кути, сума яких дорівнює , не обов’язково суміжні.)
Теорема 2. Коли два кути рівні, то суміжні з ними кути теж рівні.
Теорема 3. Кут, суміжний із прямим ­кутом, є прямий кут.
Теорема 4. Кут, суміжний із гострим ­кутом, — тупий.
Теорема 5. Кут, суміжний із тупим кутом, — гострий.
Два кути називаються вертикальними, якщо сторони одного кута є доповняльними півпрямими сторін другого.
На рисунку і , а також і — вертикальні:

Властивості вертикальних кутів
Теорема 1. Вертикальні кути рівні.
(Але не всі рівні кути вертикальні.)
Теорема 2. Кути, вертикальні рівним, ­рівні.
Якщо дві прямі перетинаються, то вони утворюють чотири нерозгорнутих кути (див. рисунок). Кожні два із цих кутів або суміжні, або вертикальні:

і ; і — вертикальні;
і ; і ; і ; і — суміжні.

НазадЗмістВперед

 

 
© www.SchoolLib.com.ua